1932

Abstract

The exponential rise in the prevalence of allergic diseases since the mid-twentieth century has led to a genuine public health emergency and has also fostered major progress in research on the underlying mechanisms and potential treatments. The management of allergic diseases benefits from the biological revolution, with an array of novel immunomodulatory therapeutic and investigational tools targeting players of allergic inflammation at distinct pathophysiological steps. Prominent examples include therapeutic monoclonal antibodies against cytokines, alarmins, and their receptors, as well as small-molecule modifiers of signal transduction mainly mediated by Janus kinases and Bruton's tyrosine kinases. However, the first-line therapeutic options have yet to switch from symptomatic to disease-modifying interventions. Here we present an overview of available drugs in the context of our current understanding of allergy pathophysiology, identify potential therapeutic targets, and conclude by providing a selection of candidate immunopharmacological molecules under investigation for potential future use in allergic diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-051623-091038
2024-01-23
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/64/1/annurev-pharmtox-051623-091038.html?itemId=/content/journals/10.1146/annurev-pharmtox-051623-091038&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Celebi Sozener Z, Ozdel Ozturk B, Cerci P, Turk M, Gorgulu Akin B et al. 2022. Epithelial barrier hypothesis: effect of the external exposome on the microbiome and epithelial barriers in allergic disease. Allergy 77:1418–49
    [Google Scholar]
  2. 2.
    GBD 2019 Dis. Inj. Collab 2020. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:1204–22
    [Google Scholar]
  3. 3.
    Tanno LK, Demoly P. 2022. Allergy in the World Health Organization's International Classification of Diseases (ICD)-11. Pediatr. Allergy Immunol. 33:Suppl. 275–7
    [Google Scholar]
  4. 4.
    Gieseck RL 3rd, Wilson MS, Wynn TA. 2018. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 18:62–76
    [Google Scholar]
  5. 5.
    Blank U, Huang H, Kawakami T. 2021. The high affinity IgE receptor: a signaling update. Curr. Opin. Immunol. 72:51–58
    [Google Scholar]
  6. 6.
    Levi-Schaffer F, Gibbs BF, Hallgren J, Pucillo C, Redegeld F et al. 2022. Selected recent advances in understanding the role of human mast cells in health and disease. J. Allergy Clin. Immunol. 149:1833–44
    [Google Scholar]
  7. 7.
    Akdis CA, Arkwright PD, Bruggen MC, Busse W, Gadina M et al. 2020. Type 2 immunity in the skin and lungs. Allergy 75:1582–605
    [Google Scholar]
  8. 8.
    Gazzinelli-Guimaraes PH, Nutman TB. 2018. Helminth parasites and immune regulation. F1000Res 7:1685
    [Google Scholar]
  9. 9.
    Custovic A, Henderson J, Simpson A. 2019. Does understanding endotypes translate to better asthma management options for all?. J. Allergy Clin. Immunol. 144:25–33
    [Google Scholar]
  10. 10.
    Maggi E, Parronchi P, Azzarone BG, Moretta L. 2022. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy 77:3267–92
    [Google Scholar]
  11. 11.
    Treudler R, Simon JC. 2023. Developments and perspectives in allergology. J. Dtsch. Dermatol. Ges. 21:399–403
    [Google Scholar]
  12. 12.
    Molofsky AB, Locksley RM. 2023. The ins and outs of innate and adaptive type 2 immunity. Immunity 56:704–22
    [Google Scholar]
  13. 13.
    Landolina N, Levi-Schaffer F. 2016. Monoclonal antibodies: the new magic bullets for allergy: IUPHAR review 17. Br. J. Pharmacol. 173:793–803
    [Google Scholar]
  14. 14.
    Nakashima C, Yanagihara S, Otsuka A. 2022. Innovation in the treatment of atopic dermatitis: emerging topical and oral Janus kinase inhibitors. Allergol. Int. 71:40–46
    [Google Scholar]
  15. 15.
    Karra L, Haworth O, Priluck R, Levy BD, Levi-Schaffer F. 2015. Lipoxin B4 promotes the resolution of allergic inflammation in the upper and lower airways of mice. Mucosal Immunol. 8:852–62
    [Google Scholar]
  16. 16.
    Puzzovio PG, Pahima H, George T, Mankuta D, Eliashar R et al. 2023. Mast cells contribute to the resolution of allergic inflammation by releasing resolvin D1. Pharmacol. Res. 189:106691
    [Google Scholar]
  17. 17.
    Durham SR, Shamji MH. 2023. Allergen immunotherapy: past, present and future. Nat. Rev. Immunol. 23:317–28
    [Google Scholar]
  18. 18.
    Soh WT, Zhang J, Hollenberg MD, Vliagoftis H, Rothenberg ME et al. 2023. Protease allergens as initiators–regulators of allergic inflammation. Allergy 78:1148–68
    [Google Scholar]
  19. 19.
    Chevigne A, Jacquet A. 2018. Emerging roles of the protease allergen Der p 1 in house dust mite-induced airway inflammation. J. Allergy Clin. Immunol. 142:398–400
    [Google Scholar]
  20. 20.
    Hellings PW, Steelant B. 2020. Epithelial barriers in allergy and asthma. J. Allergy Clin. Immunol. 145:1499–509
    [Google Scholar]
  21. 21.
    Irvine AD, McLean WH, Leung DY. 2011. Filaggrin mutations associated with skin and allergic diseases. N. Engl. J. Med. 365:1315–27
    [Google Scholar]
  22. 22.
    Castillo EF, Zheng H, Yang XO. 2018. Orchestration of epithelial-derived cytokines and innate immune cells in allergic airway inflammation. Cytokine Growth Factor Rev. 39:19–25
    [Google Scholar]
  23. 23.
    de Kleer IM, Kool M, de Bruijn MJ, Willart M, van Moorleghem J et al. 2016. Perinatal activation of the interleukin-33 pathway promotes type 2 immunity in the developing lung. Immunity 45:1285–98
    [Google Scholar]
  24. 24.
    Cook EB, Stahl JL, Schwantes EA, Fox KE, Mathur SK. 2012. IL-3 and TNFα increase Thymic Stromal Lymphopoietin Receptor (TSLPR) expression on eosinophils and enhance TSLP-stimulated degranulation. Clin. Mol. Allergy 10:8
    [Google Scholar]
  25. 25.
    Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H. 2013. The biology of thymic stromal lymphopoietin (TSLP). Adv. Pharmacol. 66:129–55
    [Google Scholar]
  26. 26.
    Marone G, Spadaro G, Braile M, Poto R, Criscuolo G et al. 2019. Tezepelumab: a novel biological therapy for the treatment of severe uncontrolled asthma. Expert Opin. Investig. Drugs 28:931–40
    [Google Scholar]
  27. 27.
    Menzies-Gow A, Steenkamp J, Singh S, Erhardt W, Rowell J et al. 2022. Tezepelumab compared with other biologics for the treatment of severe asthma: a systematic review and indirect treatment comparison. J. Med. Econ. 25:679–90
    [Google Scholar]
  28. 28.
    Hinks TSC, Levine SJ, Brusselle GG. 2021. Treatment options in type-2 low asthma. Eur. Respir. J. 57:2000528
    [Google Scholar]
  29. 29.
    Chow TG, Gill MA. 2020. Regulation of allergic inflammation by dendritic cells. Curr. Opin. Allergy Clin. Immunol. 20:56–63
    [Google Scholar]
  30. 30.
    Hilligan KL, Ronchese F. 2020. Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses. Cell Mol. Immunol. 17:587–99
    [Google Scholar]
  31. 31.
    Mirchandani AS, Besnard AG, Yip E, Scott C, Bain CC et al. 2014. Type 2 innate lymphoid cells drive CD4+ Th2 cell responses. J. Immunol. 192:2442–48
    [Google Scholar]
  32. 32.
    Furue M, Furue M. 2021. OX40L-OX40 signaling in atopic dermatitis. J. Clin. Med. 10:2578
    [Google Scholar]
  33. 33.
    Guttman-Yassky E, Pavel AB, Zhou L, Estrada YD, Zhang N et al. 2019. GBR 830, an anti-OX40, improves skin gene signatures and clinical scores in patients with atopic dermatitis. J. Allergy Clin. Immunol. 144:482–93.e7
    [Google Scholar]
  34. 34.
    Leyva-Castillo JM, Das M, Artru E, Yoon J, Galand C, Geha RS. 2021. Mast cell-derived IL-13 downregulates IL-12 production by skin dendritic cells to inhibit the TH1 cell response to cutaneous antigen exposure. J. Allergy Clin. Immunol. 147:2305–15.e3
    [Google Scholar]
  35. 35.
    Theoharides TC, Conti P. 2021. Mast cells to dendritic cells: Let IL-13 shut your IL-12 down. J. Allergy Clin. Immunol. 147:2073–74
    [Google Scholar]
  36. 36.
    Zhu J, Min B, Hu-Li J, Watson CJ, Grinberg A et al. 2004. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nat. Immunol. 5:1157–65
    [Google Scholar]
  37. 37.
    Walker JA, McKenzie ANJ. 2018. TH2 cell development and function. Nat. Rev. Immunol. 18:121–33
    [Google Scholar]
  38. 38.
    Butcher MJ, Zhu J. 2021. Recent advances in understanding the Th1/Th2 effector choice. Fac. Rev. 10:30
    [Google Scholar]
  39. 39.
    Yamane H, Zhu J, Paul WE. 2005. Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J. Exp. Med. 202:793–804
    [Google Scholar]
  40. 40.
    Guttman-Yassky E, Bissonnette R, Ungar B, Suarez-Farinas M, Ardeleanu M et al. 2019. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J. Allergy Clin. Immunol. 143:155–72
    [Google Scholar]
  41. 41.
    Popovic B, Breed J, Rees DG, Gardener MJ, Vinall LM et al. 2017. Structural characterisation reveals mechanism of IL-13-neutralising monoclonal antibody tralokinumab as inhibition of binding to IL-13Rα1 and IL-13Rα2. J. Mol. Biol. 429:208–19
    [Google Scholar]
  42. 42.
    Blair HA. 2022. Tralokinumab in atopic dermatitis: a profile of its use. Clin. Drug. Investig. 42:365–74
    [Google Scholar]
  43. 43.
    Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. 2006. IL-13 signaling through the IL-13α2 receptor is involved in induction of TGF-β1 production and fibrosis. Nat. Med. 12:99–106
    [Google Scholar]
  44. 44.
    Moyle M, Cevikbas F, Harden JL, Guttman-Yassky E. 2019. Understanding the immune landscape in atopic dermatitis: the era of biologics and emerging therapeutic approaches. Exp. Dermatol. 28:756–68
    [Google Scholar]
  45. 45.
    Labib A, Ju T, Yosipovitch G. 2022. Managing atopic dermatitis with lebrikizumab—the evidence to date. Clin. Cosmet. Investig. Dermatol. 15:1065–72
    [Google Scholar]
  46. 46.
    Ridolo E, Incorvaia C, Pucciarini F, Makri E, Paoletti G, Canonica GW. 2022. Current treatment strategies for seasonal allergic rhinitis: Where are we heading?. Clin. Mol. Allergy 20:9
    [Google Scholar]
  47. 47.
    Nogueira M, Torres T. 2021. Janus kinase inhibitors for the treatment of atopic dermatitis: focus on abrocitinib, baricitinib, and upadacitinib. Dermatol. Pract. Concept. 11:e2021145
    [Google Scholar]
  48. 48.
    Le M, Berman-Rosa M, Ghazawi FM, Bourcier M, Fiorillo L et al. 2021. Systematic review on the efficacy and safety of oral Janus kinase inhibitors for the treatment of atopic dermatitis. Front. Med. 8:682547
    [Google Scholar]
  49. 49.
    Allen CDC. 2022. Features of B cell responses relevant to allergic disease. J. Immunol. 208:257–66
    [Google Scholar]
  50. 50.
    Gowthaman U, Sikder S, Lee D, Fisher C. 2022. T follicular helper cells in IgE-mediated pathologies. Curr. Opin. Immunol. 74:133–39
    [Google Scholar]
  51. 51.
    Mitre E, Nutman TB. 2006. IgE memory: persistence of antigen-specific IgE responses years after treatment of human filarial infections. J. Allergy Clin. Immunol. 117:939–45
    [Google Scholar]
  52. 52.
    Eckl-Dorna J, Villazala-Merino S, Campion NJ, Byazrova M, Filatov A et al. 2019. Tracing IgE-producing cells in allergic patients. Cells 8:994
    [Google Scholar]
  53. 53.
    McDonnell JM, Dhaliwal B, Sutton BJ, Gould HJ. 2023. IgE, IgE receptors and anti-IgE biologics: protein structures and mechanisms of action. Annu. Rev. Immunol. 41:255–75
    [Google Scholar]
  54. 54.
    Yamaguchi M, Lantz CS, Oettgen HC, Katona IM, Fleming T et al. 1997. IgE enhances mouse mast cell FcεRI expression in vitro and in vivo: evidence for a novel amplification mechanism in IgE-dependent reactions. J. Exp. Med. 185:663–72
    [Google Scholar]
  55. 55.
    Yamaguchi M, Sayama K, Yano K, Lantz CS, Noben-Trauth N et al. 1999. IgE enhances Fc epsilon receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fcε receptor I expression and mediator release. J. Immunol. 162:5455–65
    [Google Scholar]
  56. 56.
    Jensen RK, Plum M, Tjerrild L, Jakob T, Spillner E, Andersen GR 2015. Structure of the omalizumab Fab. Acta Crystallogr. F Struct. Biol. Commun. 71:419–26
    [Google Scholar]
  57. 57.
    Holgate S, Smith N, Massanari M, Jimenez P. 2009. Effects of omalizumab on markers of inflammation in patients with allergic asthma. Allergy 64:1728–36
    [Google Scholar]
  58. 58.
    Bousquet J, Humbert M, Gibson PG, Kostikas K, Jaumont X et al. 2021. Real-world effectiveness of omalizumab in severe allergic asthma: a meta-analysis of observational studies. J. Allergy Clin. Immunol. Pract. 9:2702–14
    [Google Scholar]
  59. 59.
    Agache I, Rocha C, Pereira A, Song Y, Alonso-Coello P et al. 2021. Efficacy and safety of treatment with omalizumab for chronic spontaneous urticaria: a systematic review for the EAACI Biologicals Guidelines. Allergy 76:59–70
    [Google Scholar]
  60. 60.
    Zuberbier T, Abdul Latiff AH, Abuzakouk M, Aquilina S, Asero R et al. 2022. The international EAACI/GA2LEN/EuroGuiDerm/APAAACI guideline for the definition, classification, diagnosis, and management of urticaria. Allergy 77:734–66
    [Google Scholar]
  61. 61.
    Chong LY, Piromchai P, Sharp S, Snidvongs K, Webster KE et al. 2021. Biologics for chronic rhinosinusitis. Cochrane Database Syst. Rev. 3:CD013513
    [Google Scholar]
  62. 62.
    Tsabouri S, Ntritsos G, Koskeridis F, Evangelou E, Olsson P, Kostikas K. 2021. Omalizumab for the treatment of allergic rhinitis: a systematic review and meta-analysis. Rhinology 59:501–10
    [Google Scholar]
  63. 63.
    Chia SL, Kapoor S, Carvalho C, Bajenoff M, Gentek R. 2023. Mast cell ontogeny: from fetal development to life-long health and disease. Immunol. Rev. 315:31–53
    [Google Scholar]
  64. 64.
    Nilsson G, Butterfield JH, Nilsson K, Siegbahn A. 1994. Stem cell factor is a chemotactic factor for human mast cells. J. Immunol. 153:3717–23
    [Google Scholar]
  65. 65.
    Tsai M, Valent P, Galli SJ. 2022. KIT as a master regulator of the mast cell lineage. J. Allergy Clin. Immunol. 149:1845–54
    [Google Scholar]
  66. 66.
    Miralda I, Samanas NB, Seo AJ, Foronda JS, Sachen J et al. 2023. Siglec-9 is an inhibitory receptor on human mast cells in vitro. J. Allergy Clin. Immunol. 152:3711–24
    [Google Scholar]
  67. 67.
    Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G et al. 2019. Physiological roles of mast cells: Collegium Internationale Allergologicum update 2019. Int. Arch. Allergy Immunol. 179:247–61
    [Google Scholar]
  68. 68.
    Frossi B, Mion F, Tripodo C, Colombo MP, Pucillo CE. 2017. Rheostatic functions of mast cells in the control of innate and adaptive immune responses. Trends Immunol. 38:648–56
    [Google Scholar]
  69. 69.
    Starkl P, Watzenboeck ML, Popov LM, Zahalka S, Hladik A et al. 2020. IgE effector mechanisms, in concert with mast cells, contribute to acquired host defense against Staphylococcus aureus. Immunity 53:793–804.e9
    [Google Scholar]
  70. 70.
    Dudeck J, Kotrba J, Immler R, Hoffmann A, Voss M et al. 2021. Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity 54:468–83.e5
    [Google Scholar]
  71. 71.
    Varricchi G, Marone G, Kovanen PT. 2020. Cardiac mast cells: underappreciated immune cells in cardiovascular homeostasis and disease. Trends Immunol. 41:734–46
    [Google Scholar]
  72. 72.
    Tiligada E, Ennis M. 2020. Histamine pharmacology: from Sir Henry Dale to the 21st century. Br. J. Pharmacol. 177:469–89
    [Google Scholar]
  73. 73.
    Simons FE. 2004. Advances in H1-antihistamines. N. Engl. J. Med. 351:2203–17
    [Google Scholar]
  74. 74.
    Panula P, Chazot PL, Cowart M, Gutzmer R, Leurs R et al. 2015. International Union of Basic and Clinical Pharmacology. XCVIII. Histamine receptors. Pharmacol. Rev. 67:601–55
    [Google Scholar]
  75. 75.
    Kyriakidis K, Zampeli E, Palaiologou M, Tiniakos D, Tiligada E. 2015. Histamine H3 and H4 receptor ligands modify vascular histamine levels in normal and arthritic large blood vessels in vivo. Inflammation 38:949–58
    [Google Scholar]
  76. 76.
    Hellman L, Akula S, Fu Z, Wernersson S. 2022. Mast cell and basophil granule proteases—in vivo targets and function. Front. Immunol. 13:918305
    [Google Scholar]
  77. 77.
    Michel M, Klingebiel C, Vitte J. 2023. Tryptase in type I hypersensitivity. Ann. Allergy Asthma Immunol. 130:169–77
    [Google Scholar]
  78. 78.
    Xue L, Salimi M, Panse I, Mjosberg JM, McKenzie AN et al. 2014. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells. J. Allergy Clin. Immunol. 133:1184–94
    [Google Scholar]
  79. 79.
    Doherty TA, Khorram N, Lund S, Mehta AK, Croft M, Broide DH. 2013. Lung type 2 innate lymphoid cells express cysteinyl leukotriene receptor 1, which regulates TH2 cytokine production. J. Allergy Clin. Immunol. 132:205–13
    [Google Scholar]
  80. 80.
    Bulfone-Paus S, Nilsson G, Draber P, Blank U, Levi-Schaffer F. 2017. Positive and negative signals in mast cell activation. Trends Immunol. 38:657–67
    [Google Scholar]
  81. 81.
    Kolkhir P, Elieh-Ali-Komi D, Metz M, Siebenhaar F, Maurer M. 2022. Understanding human mast cells: lesson from therapies for allergic and non-allergic diseases. Nat. Rev. Immunol. 22:294–308
    [Google Scholar]
  82. 82.
    Suresh RV, Dunnam C, Vaidya D, Wood RA, Bochner BS et al. 2023. Bruton's tyrosine kinase inhibition for the prevention of anaphylaxis: an open-label, phase 2 trial Res. Sq. 2757218. https://doi.org/10.21203/rs.3.rs-2757218/v1
  83. 83.
    Mendes-Bastos P, Brasileiro A, Kolkhir P, Frischbutter S, Scheffel J et al. 2022. Bruton's tyrosine kinase inhibition—an emerging therapeutic strategy in immune-mediated dermatological conditions. Allergy 77:2355–66
    [Google Scholar]
  84. 84.
    McLeod JJ, Baker B, Ryan JJ. 2015. Mast cell production and response to IL-4 and IL-13. Cytokine 75:57–61
    [Google Scholar]
  85. 85.
    Church MK. 2017. Allergy, histamine and antihistamines. Histamine and Histamine Receptors in Health and Disease Y Hattori, R Seifert 321–31. Cham, Switz.: Springer
    [Google Scholar]
  86. 86.
    Kawauchi H, Yanai K, Wang DY, Itahashi K, Okubo K. 2019. Antihistamines for allergic rhinitis treatment from the viewpoint of nonsedative properties. Int. J. Mol. Sci. 20:213
    [Google Scholar]
  87. 87.
    Castillo M, Scott NW, Mustafa MZ, Mustafa MS, Azuara-Blanco A. 2015. Topical antihistamines and mast cell stabilisers for treating seasonal and perennial allergic conjunctivitis. Cochrane Database Syst. Rev. 6:CD009566
    [Google Scholar]
  88. 88.
    Wise SK, Damask C, Greenhawt M, Oppenheimer J, Roland LT et al. 2023. A synopsis of guidance for allergic rhinitis diagnosis and management from ICAR 2023. J. Allergy Clin. Immunol. Pract. 11:773–96
    [Google Scholar]
  89. 89.
    Harvima IT, Levi-Schaffer F, Draber P, Friedman S, Polakovicova I et al. 2014. Molecular targets on mast cells and basophils for novel therapies. J. Allergy Clin. Immunol. 134:530–44
    [Google Scholar]
  90. 90.
    Wood RA, Chinthrajah RS, Eggel A, Bottoli I, Gautier A et al. 2022. The rationale for development of ligelizumab in food allergy. World Allergy Organ. J. 15:100690
    [Google Scholar]
  91. 91.
    Dispenza MC, Metcalfe DD, Olivera A. 2023. Research advances in mast cell biology and their translation into novel therapies for anaphylaxis. J. Allergy Clin. Immunol. Pract. 11:2032–42
    [Google Scholar]
  92. 92.
    Mori Y, Iwasaki H, Kohno K, Yoshimoto G, Kikushige Y et al. 2009. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J. Exp. Med. 206:183–93
    [Google Scholar]
  93. 93.
    Robida PA, Puzzovio PG, Pahima H, Levi-Schaffer F, Bochner BS. 2018. Human eosinophils and mast cells: birds of a feather flock together. Immunol. Rev. 282:151–67
    [Google Scholar]
  94. 94.
    Farahi N, Singh NR, Heard S, Loutsios C, Summers C et al. 2012. Use of 111-indium-labeled autologous eosinophils to establish the in vivo kinetics of human eosinophils in healthy subjects. Blood 120:4068–71
    [Google Scholar]
  95. 95.
    Klion AD, Ackerman SJ, Bochner BS. 2020. Contributions of eosinophils to human health and disease. Annu. Rev. Pathol. 15:179–209
    [Google Scholar]
  96. 96.
    Acharya KR, Ackerman SJ. 2014. Eosinophil granule proteins: form and function. J. Biol. Chem. 289:17406–15
    [Google Scholar]
  97. 97.
    Grozdanovic MM, Doyle CB, Liu L, Maybruck BT, Kwatia MA et al. 2020. Charcot-Leyden crystal protein/galectin-10 interacts with cationic ribonucleases and is required for eosinophil granulogenesis. J. Allergy Clin. Immunol. 146:377–89.e10
    [Google Scholar]
  98. 98.
    Lombardi C, Berti A, Cottini M. 2022. The emerging roles of eosinophils: implications for the targeted treatment of eosinophilic-associated inflammatory conditions. Curr. Res. Immunol. 3:42–53
    [Google Scholar]
  99. 99.
    Galdiero MR, Varricchi G, Seaf M, Marone G, Levi-Schaffer F, Marone G. 2017. Bidirectional mast cell-eosinophil interactions in inflammatory disorders and cancer. Front. Med. 4:103
    [Google Scholar]
  100. 100.
    Adachi T, Alam R. 1998. The mechanism of IL-5 signal transduction. Am. J. Physiol. 275:C623–33
    [Google Scholar]
  101. 101.
    Gevaert P, Hellman C, Lundblad L, Lundahl J, Holtappels G et al. 2009. Differential expression of the interleukin 5 receptor α isoforms in blood and tissue eosinophils of nasal polyp patients. Allergy 64:725–32
    [Google Scholar]
  102. 102.
    Heaney LG, Perez de Llano L, Al-Ahmad M, Backer V, Busby J et al. 2021. Eosinophilic and noneosinophilic asthma: an expert consensus framework to characterize phenotypes in a global real-life severe asthma cohort. Chest 160:814–30
    [Google Scholar]
  103. 103.
    Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R et al. 2012. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380:651–59
    [Google Scholar]
  104. 104.
    Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM et al. 2014. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371:1198–207
    [Google Scholar]
  105. 105.
    Nagase H, Suzukawa M, Oishi K, Matsunaga K. 2023. Biologics for severe asthma: the real-world evidence, effectiveness of switching, and prediction factors for the efficacy. Allergol. Int. 72:11–23
    [Google Scholar]
  106. 106.
    Deeks ED, Brusselle G. 2017. Reslizumab in eosinophilic asthma: a review. Drugs 77:777–84
    [Google Scholar]
  107. 107.
    Van Hulst G, Jorssen J, Jacobs N, Henket M, Louis R et al. 2022. Anti-IL5 mepolizumab minimally influences residual blood eosinophils in severe asthma. Eur. Respir. J. 59:2100935
    [Google Scholar]
  108. 108.
    Davila Gonzalez I, Moreno Benitez F, Quirce S 2019. Benralizumab: a new approach for the treatment of severe eosinophilic asthma. J. Investig. Allergol. Clin. Immunol. 29:84–93
    [Google Scholar]
  109. 109.
    Kolbeck R, Kozhich A, Koike M, Peng L, Andersson CK et al. 2010. MEDI-563, a humanized anti-IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. J. Allergy Clin. Immunol. 125:1344–53.e2
    [Google Scholar]
  110. 110.
    Pease JE, Williams TJ. 2001. Eotaxin and asthma. Curr. Opin. Pharmacol. 1:248–53
    [Google Scholar]
  111. 111.
    Salib RJ, Lau LC, Howarth PH. 2005. Nasal lavage fluid concentrations of eotaxin-1 (CCL11) in naturally occurring allergic rhinitis: relationship to disease activity, nasal luminal eosinophil influx, and plasma protein exudation. Clin. Exp. Allergy 35:995–1002
    [Google Scholar]
  112. 112.
    Hoffmann HJ, Nielsen LP, Harving H, Heinig JH, Dahl R. 2008. Asthmatics able to step down from inhaled corticosteroid treatment without loss of asthma control have low serum eotaxin/CCL11. Clin. Respir. J. 2:149–57
    [Google Scholar]
  113. 113.
    Minai-Fleminger Y, Elishmereni M, Vita F, Soranzo MR, Mankuta D et al. 2010. Ultrastructural evidence for human mast cell-eosinophil interactions in vitro. Cell Tissue Res. 341:405–15
    [Google Scholar]
  114. 114.
    Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. 2017. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol. Ther. 170:37–63
    [Google Scholar]
  115. 115.
    Munitz A, Bachelet I, Fraenkel S, Katz G, Mandelboim O et al. 2005. 2B4 (CD244) is expressed and functional on human eosinophils. J. Immunol. 174:110–18
    [Google Scholar]
  116. 116.
    Gangwar RS, Minai-Fleminger Y, Seaf M, Gutgold A, Shikotra A et al. 2017. CD48 on blood leukocytes and in serum of asthma patients varies with severity. Allergy 72:888–95
    [Google Scholar]
  117. 117.
    Zoabi Y, Rahimli Alekberli F, Minai-Fleminger Y, Eliashar R, Levi-Schaffer F. 2021. CD48 expression on eosinophils in nasal polyps of chronic rhinosinusitis patients. Int. Arch. Allergy Immunol. 182:962–70
    [Google Scholar]
  118. 118.
    Minai-Fleminger Y, Gangwar RS, Migalovich-Sheikhet H, Seaf M, Leibovici V et al. 2014. The CD48 receptor mediates Staphylococcus aureus human and murine eosinophil activation. Clin. Exp. Allergy 44:1335–46
    [Google Scholar]
  119. 119.
    Bachelet I, Munitz A, Berent-Maoz B, Mankuta D, Levi-Schaffer F. 2008. Suppression of normal and malignant Kit signaling by a bispecific antibody linking kit with CD300a. J. Immunol. 180:6064–69
    [Google Scholar]
  120. 120.
    Bachelet I, Munitz A, Levi-Schaffer F. 2006. Abrogation of allergic reactions by a bispecific antibody fragment linking IgE to CD300a. J. Allergy Clin. Immunol. 117:1314–20
    [Google Scholar]
  121. 121.
    Landolina N, Zaffran I, Smiljkovic D, Serrano-Candelas E, Schmiedel D et al. 2020. Activation of Siglec-7 results in inhibition of in vitro and in vivo growth of human mast cell leukemia cells. Pharmacol. Res. 158:104682
    [Google Scholar]
  122. 122.
    Legrand F, Landolina N, Zaffran I, Emeh RO, Chen E et al. 2019. Siglec-7 on peripheral blood eosinophils: surface expression and function. Allergy 74:1257–65
    [Google Scholar]
  123. 123.
    Mizrahi S, Gibbs BF, Karra L, Ben-Zimra M, Levi-Schaffer F. 2014. Siglec-7 is an inhibitory receptor on human mast cells and basophils. J. Allergy Clin. Immunol. 134:230–33
    [Google Scholar]
  124. 124.
    Williams DM. 2018. Clinical pharmacology of corticosteroids. Respir. Care 63:655–70
    [Google Scholar]
  125. 125.
    Li H, Zuo J, Tang W. 2018. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front. Pharmacol. 9:1048
    [Google Scholar]
  126. 126.
    Chinn AM, Salmeron C, Lee J, Sriram K, Raz E, Insel PA. 2022. PDE4B is a homeostatic regulator of cyclic AMP in dendritic cells. Front. Pharmacol. 13:833832
    [Google Scholar]
  127. 127.
    Chinn AM, Insel PA. 2020. Cyclic AMP in dendritic cells: a novel potential target for disease-modifying agents in asthma and other allergic disorders. Br. J. Pharmacol. 177:3363–77
    [Google Scholar]
  128. 128.
    Agnihotri G, Lio PA. 2020. Revisiting therapies for atopic dermatitis that failed clinical trials. Clin. Drug Investig. 40:421–31
    [Google Scholar]
  129. 129.
    Goonathilake MR, Waqar S, George S, Jean-Baptiste W, Yusuf Ali A et al. 2022. Can phosphodiesterase 4 inhibitor therapy be used in respiratory diseases other than chronic obstructive pulmonary disease?. Cureus 14:e27132
    [Google Scholar]
  130. 130.
    Wendell SG, Fan H, Zhang C. 2020. G protein–coupled receptors in asthma therapy: pharmacology and drug action. Pharmacol. Rev. 72:1–49
    [Google Scholar]
  131. 131.
    Coruzzi G, Pozzoli C, Adami M, Grandi D, Guido N et al. 2012. Strain-dependent effects of the histamine H4 receptor antagonist JNJ7777120 in a murine model of acute skin inflammation. Exp. Dermatol. 21:32–37
    [Google Scholar]
  132. 132.
    Aun MV, Bonamichi-Santos R, Arantes-Costa FM, Kalil J, Giavina-Bianchi P 2017. Animal models of asthma: utility and limitations. J. Asthma Allergy 10:293–301
    [Google Scholar]
  133. 133.
    Siebenhaar F, Falcone FH, Tiligada E, Hammel I, Maurer M et al. 2015. The search for mast cell and basophil models—Are we getting closer to pathophysiological relevance?. Allergy 70:1–5
    [Google Scholar]
  134. 134.
    Chan R, Kuo CRW, Lipworth B. 2020. Pragmatic clinical perspective on biologics for severe refractory type 2 asthma. J. Allergy Clin. Immunol. Pract. 8:3363–70
    [Google Scholar]
  135. 135.
    Kandi V, Vadakedath S. 2023. Clinical trials and clinical research: a comprehensive review. Cureus 15:e35077
    [Google Scholar]
  136. 136.
    Kruse RL, Vanijcharoenkarn K. 2018. Drug repurposing to treat asthma and allergic disorders: progress and prospects. Allergy 73:313–22
    [Google Scholar]
  137. 137.
    Facheris P, Jeffery J, Del Duca E, Guttman-Yassky E. 2023. The translational revolution in atopic dermatitis: the paradigm shift from pathogenesis to treatment. Cell Mol. Immunol. 20:448–74
    [Google Scholar]
  138. 138.
    Kyriakopoulos C, Gogali A, Bartziokas K, Kostikas K. 2021. Identification and treatment of T2-low asthma in the era of biologics. ERJ Open Res. 7:00309-2020
    [Google Scholar]
  139. 139.
    Suárez-Fariñas M, Dhingra N, Gittler J, Shemer A, Cardinale I et al. 2013. Intrinsic atopic dermatitis shows similar TH2 and higher TH17 immune activation compared with extrinsic atopic dermatitis. J. Allergy Clin. Immunol. 132:361–70
    [Google Scholar]
  140. 140.
    Ungar B, Pavel AB, Li R, Kimmel G, Nia J et al. 2021. Phase 2 randomized, double-blind study of IL-17 targeting with secukinumab in atopic dermatitis. J. Allergy Clin. Immunol. 147:394–97
    [Google Scholar]
  141. 141.
    Tyring SK, Rich P, Tada Y, Beeck S, Messina I et al. 2023. Risankizumab in patients with moderate-to-severe atopic dermatitis: a Phase 2, randomized, double-blind, placebo-controlled study. Dermatol. Ther. 13:595–608
    [Google Scholar]
  142. 142.
    Kelsen SG, Agache IO, Soong W, Israel E, Chupp GL et al. 2021. Astegolimab (anti-ST2) efficacy and safety in adults with severe asthma: a randomized clinical trial. J. Allergy Clin. Immunol. 148:790–98
    [Google Scholar]
  143. 143.
    Chan R, Stewart K, Misirovs R, Lipworth BJ. 2022. Targeting downstream type 2 cytokines or upstream epithelial alarmins for severe asthma. J. Allergy Clin. Immunol. Pract. 10:1497–505
    [Google Scholar]
  144. 144.
    Guttman-Yassky E, Simpson EL, Reich K, Kabashima K, Igawa K et al. 2023. An anti-OX40 antibody to treat moderate-to-severe atopic dermatitis: a multicentre, double-blind, placebo-controlled phase 2b study. Lancet 401:204–14
    [Google Scholar]
  145. 145.
    Helou DG, Shafiei-Jahani P, Lo R, Howard E, Hurrell BP et al. 2020. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat. Commun. 11:3998
    [Google Scholar]
  146. 146.
    Helou DG, Shafiei-Jahani P, Hurrell BP, Painter JD, Quach C et al. 2022. LAIR-1 acts as an immune checkpoint on activated ILC2s and regulates the induction of airway hyperreactivity. J. Allergy Clin. Immunol. 149:223–36.e6
    [Google Scholar]
  147. 147.
    Schanin J, Korver W, Brock EC, Leung J, Benet Z et al. 2022. Discovery of an agonistic Siglec-6 antibody that inhibits and reduces human mast cells. Commun. Biol. 5:1226
    [Google Scholar]
  148. 148.
    Bachelet I, Munitz A, Moretta A, Moretta L, Levi-Schaffer F. 2005. The inhibitory receptor IRp60 (CD300a) is expressed and functional on human mast cells. J. Immunol. 175:7989–95
    [Google Scholar]
  149. 149.
    Munitz A, Bachelet I, Levi-Schaffer F. 2006. Reversal of airway inflammation and remodeling in asthma by a bispecific antibody fragment linking CCR3 to CD300a. J. Allergy Clin. Immunol. 118:1082–89
    [Google Scholar]
  150. 150.
    Terhorst-Molawi D, Hawro T, Grekowitz E, Kiefer L, Merchant K et al. 2023. Anti-KIT antibody, barzolvolimab, reduces skin mast cells and disease activity in chronic inducible urticaria. Allergy 78:1269–79
    [Google Scholar]
  151. 151.
    Maun HR, Jackman JK, Choy DF, Loyet KM, Staton TL et al. 2019. An allosteric anti-tryptase antibody for the treatment of mast cell-mediated severe asthma. Cell 179:417–31.e19
    [Google Scholar]
  152. 152.
    Rymut SM, Sukumaran S, Sperinde G, Bremer M, Galanter J et al. 2022. Dose-dependent inactivation of airway tryptase with a novel dissociating anti-tryptase antibody (MTPS9579A) in healthy participants: a randomized trial. Clin. Transl. Sci. 15:451–63
    [Google Scholar]
  153. 153.
    Pfeifer N, Guerin T, Colley K, Yates W, Kaufman E et al. 2021. Safety, pharmacokinetics, and pharmacodynamics of TD-8236, an inhaled pan-JAK inhibitor, following single- and multiple-ascending doses in healthy volunteers and mild asthmatics. Eur. Respir. J. 58:Suppl. 65OA1195
    [Google Scholar]
  154. 154.
    Zhao Y, Zhang L, Ding Y, Tao X, Ji C et al. 2021. Efficacy and safety of SHR0302, a highly selective Janus kinase 1 inhibitor, in patients with moderate to severe atopic dermatitis: a Phase II randomized clinical trial. Am. J. Clin. Dermatol. 22:877–89
    [Google Scholar]
  155. 155.
    Maurer M, Berger W, Gimenez-Arnau A, Hayama K, Jain V et al. 2022. Remibrutinib, a novel BTK inhibitor, demonstrates promising efficacy and safety in chronic spontaneous urticaria. J. Allergy Clin. Immunol. 150:1498–506.e2
    [Google Scholar]
  156. 156.
    Carvallo A, Sanchez-Fernandez S, Morales-Palacios MP. 2023. Fenebrutinib and BTK inhibition: unveiling a new target for the treatment of chronic spontaneous urticaria. Allergy 78:603–5
    [Google Scholar]
  157. 157.
    Zampeli E, Tiligada E. 2009. The role of histamine H4 receptor in immune and inflammatory disorders. Br. J. Pharmacol. 157:24–33
    [Google Scholar]
  158. 158.
    Kollmeier AP, Barnathan ES, O'Brien C, Chen B, Xia YK et al. 2018. A Phase 2a study of toreforant, a histamine H4 receptor antagonist, in eosinophilic asthma. Ann. Allergy Asthma Immunol. 121:568–74
    [Google Scholar]
  159. 159.
    Zuberbier T, Beck LA, Bedbrook A, de Bruin-Weller M, Bousquet J et al. 2023. Developing integrated care pathways for atopic dermatitis-challenges and unmet needs. Clin. Transl. Allergy 13:e12236
    [Google Scholar]
  160. 160.
    Bieber T. 2022. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug. Discov. 21:21–40
    [Google Scholar]
  161. 161.
    Sidbury R, Davis DM, Cohen DE, Cordoro KM, Berger TG et al. 2014. Guidelines of care for the management of atopic dermatitis: section 3. Management and treatment with phototherapy and systemic agents. J. Am. Acad. Dermatol. 71:327–49
    [Google Scholar]
  162. 162.
    Uluckan O, Bruno S, Wang Y, Wack N, Wilzopolski J et al. 2023. Adriforant is a functional antagonist of histamine receptor 4 and attenuates itch and skin inflammation in mice. Eur. J. Pharmacol. 945:175533
    [Google Scholar]
  163. 163.
    Chhatar S, Lal G. 2021. Role of adrenergic receptor signalling in neuroimmune communication. Curr. Res. Immunol. 2:202–17
    [Google Scholar]
  164. 164.
    Roberts LB, Berkachy R, Wane M, Patel DF, Schnoeller C et al. 2022. Differential regulation of allergic airway inflammation by acetylcholine. Front. Immunol. 13:893844
    [Google Scholar]
  165. 165.
    Oda N, Miyahara N, Taniguchi A, Morichika D, Senoo S et al. 2019. Requirement for neuropeptide Y in the development of type 2 responses and allergen-induced airway hyperresponsiveness and inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 316:L407–17
    [Google Scholar]
  166. 166.
    de Souza Ferreira S, Bek MK, Tibbitt CA. 2023. pH sensing shapes immune cell function: the role of GPR65 and its implications for allergic disease. Allergy 78:2061–63
    [Google Scholar]
  167. 167.
    Castan L, Magnan A, Bouchaud G. 2017. Chemokine receptors in allergic diseases. Allergy 72:682–90
    [Google Scholar]
  168. 168.
    Jahangir A, Sattar SBA, Rafay Khan Niazi M, Muhammad M, Jahangir A et al. 2022. Efficacy and safety of fevipiprant in asthma: a review and meta-analysis. Cureus 14:e24641
    [Google Scholar]
  169. 169.
    Garcia-Garcia L, Olle L, Martin M, Roca-Ferrer J, Munoz-Cano R 2021. Adenosine signaling in mast cells and allergic diseases. Int. J. Mol. Sci. 22:5203
    [Google Scholar]
  170. 170.
    Murata Y, Song M, Kikuchi H, Hisamichi K, Xu XL et al. 2015. Phase 2a, randomized, double-blind, placebo-controlled, multicenter, parallel-group study of a H4R-antagonist (JNJ-39758979) in Japanese adults with moderate atopic dermatitis. J. Dermatol. 42:129–39
    [Google Scholar]
  171. 171.
    Ma H, Gao T, Jakobsson JET, Weman HM, Xu B et al. 2020. The neuropeptide Y Y2 receptor is coexpressed with Nppb in primary afferent neurons and Y2 activation reduces histaminergic and IL-31-induced itch. J. Pharmacol. Exp. Ther. 372:73–82
    [Google Scholar]
  172. 172.
    Thomas CM, Peebles RS Jr. 2022. Neural regulation of ILC2s in allergic airway inflammation. Front Allergy 3:1094259
    [Google Scholar]
  173. 173.
    Matsuyama T, Machida K, Motomura Y, Takagi K, Doutake Y et al. 2021. Long-acting muscarinic antagonist regulates group 2 innate lymphoid cell-dependent airway eosinophilic inflammation. Allergy 76:2785–96
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-051623-091038
Loading
/content/journals/10.1146/annurev-pharmtox-051623-091038
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error